MAAPSS0081

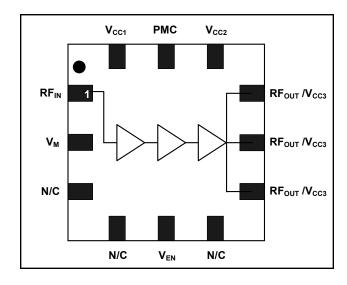
ISM Power Amplifier 2.4 - 2.5 GHz

Rev. V1

Features

- Ideal for 2.4 GHz Cordless Applications
- Power Set Pin for Adjustable Output Power High Power Mode: 24 dBm, 300 mA Low Power Mode: 16 dBm, 110 mA
- Power Gain: 23 dB Typical
- Power Enable: 2.5 V
- Micro-Amp Shutdown Current
- Operates from 1.8 V to 3.6 V
- Lead-Free 3 mm 12-Lead PQFN Package
- 100% Matte Tin Plating over Copper
- Halogen-Free "Green" Mold Compound
- RoHS* Compliant and 260°C Reflow Compatible

Description


The MAAPSS0081 is a three stage power amplifier designed for 2.4 GHz Cordless Telephone applications. The power amplifier is available in a lead-free 3 mm 12-lead PQFN plastic package. The MAAPSS0081 features an integrated power enable pin (5) for accurate ramp control and a separate power mode pin (2) for current savings in a low power mode state.

Ordering Information^{1,2}

Part Number	Package
MAAPSS0081TR-3000	3000 piece reel
MAAPSS0081SMB	Sample Board, 2.4 - 2.5 GHz tuning

- 1. Reference Application Note M513 for reel size information.
- 2. All sample boards include 5 loose parts.

Functional Schematic

Pin Configuration

Pin No.	Pin Name	Description	
1	RF _{IN}	RF Input	
2	V _M	Power Mode	
3	N/C	No Connection	
4	N/C	No Connection	
5	V _{EN}	Power Enable	
6	N/C	No Connection	
7	RF _{OUT} / V _{CC3}	RF Output, 3rd Stage Supply	
8	RF _{OUT} / V _{CC3}	RF Output, 3rd Stage Supply	
9	RF _{OUT} / V _{CC3}	RF Output, 3rd Stage Supply	
10	V_{CC2}	2nd Stage Supply	
11	PMC	Power Mode Control	
12	V _{CC1}	1st Stage Supply	
Pad ³	GND	RF & DC Ground	

3. The exposed pad centered on the package bottom must be connected to RF and DC ground.

^{*} Restrictions on Hazardous Substances, European Union Directive 2002/95/EC.

North America Tel: 800.366.2266 / Fax: 978.366.2266

Europe Tel: 44.1908.574.200 / Fax: 44.1908.574.300

Asia/Pacific Tel: 81.44.844.8296 / Fax: 81.44.844.8298 Visit www.macomtech.com for additional data sheets and product information.

Rev. V1

Electrical Specifications: F = 2.45 GHz, P_{IN} = 1 dBm, V_{CC} = 2.4 V, T_A = 25 °C, Z_0 = 50 Ω

Parameter	Test Conditions		Min.	Тур.	Max.
Input Return Loss	$V_{M} = 0 V$	dB	_	10	_
	V _M = 2.5 V	dB	_	20	_
	$V_{M} = 2.5 \text{ V}, \ V_{CC} = 3.0 \text{ V}$	dBm	_	25	_
P _{OUT} , High Power Mode (HPM)		dBm	23	24	_
	V_{CC} = 2.0 V	dBm	_	23	_
P _{OUT} vs. Temperature, HPM	$T_A = 0$ °C to 50 °C, $V_{CC} = 2.4$ V	dB	_	0.8	_
Current, HPM	$V_{M} = 2.5 \text{ V}, V_{CC} = 2.4 \text{ V}$	mΑ	_	300	400
P _{OUT} , Low Power Mode (LPM)	$V_{M} = 0 \text{ V}, V_{CC} = 2.4 \text{ V}$	dBm	13	16	_
Current, LPM	$V_{M} = 0 \text{ V}, V_{CC} = 2.4 \text{ V}$	mA	_	110	200
Current, Shutdown	$V_{CC} = 2.4 \text{ V}, V_{EN} = 0 \text{ V}$	μA		1	_
Mode Current	$V_{M} = 2.5 \text{ V}, \ V_{CC} = 2.4 \text{ V}$	mA	_	0.5	_
Enable Current	$V_{M} = 2.5 \text{ V}, \ V_{CC} = 2.4 \text{ V}, \ V_{EN} = 2.5 \text{ V}$	mA	_	2.0	4.0
Harmonics	$V_{M} = 2.5 \text{ V}, V_{CC} = 2.4 \text{ V}$ $2f_{o}$	dBc	_	-37	_
Harmonics	3f _o	dBc	_	-37	_
Forward Isolation	V _{EN} = 0 V	dB		36	
Stability	+1.5 V < V_{CC} < +3.5 V, P_{OUT} = HPM & LPM, VSWR < 6:1 -20°C < T_{A} < +70°C, RBW = 3 MHz max. hold	All spurs < -60 dBc		dBc	
Turn on/off time	t _{on} : RF burst to (Avg Power - 1 dB)	μS	_	5	_
Tan on on time	t _{off} : (Avg Power – 1 dB) to RF off	μS	_	5	_
Power Gain		dB	_	23	_

Absolute Maximum Ratings 4,5

Parameter	Absolute Maximum	
Input Power	+ 5 dBm	
Operating Supply Voltage	+4.0 Volts	
Operating Control Voltage	+3.0 Volts	
Operating Temperature	-20 °C to +85 °C	
Channel Temperature	+150 °C	
Storage Temperature	-40 °C to +150 °C	

- 4. Exceeding any one or combination of these limits may cause permanent damage to this device.
- 5. M/A-COM does not recommend sustained operation near these survivability limits.

Logic Table ⁶

V _{EN}	V _M	State
0	0	OFF
0	1	OFF
1	0	LPM
1	1	HPM

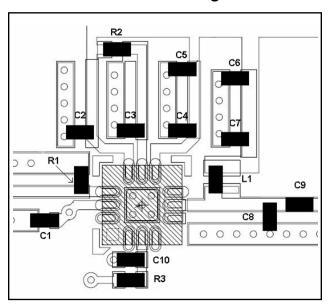
6. 1 = +2.0 V to 2.5 V, 0 = 0 V to 0.5 V.

Operating the MAAPSS0081

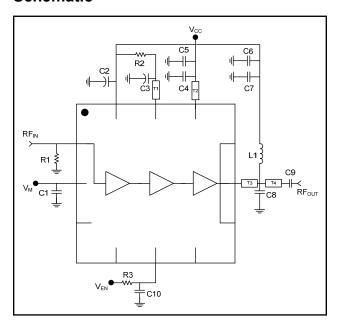
The MAAPSS0081 is sensitive to electrostatic discharge (ESD). Use proper ESD control techniques when handling this device. To operate the MAAPSS0081, follow these steps. Ramp down or shut down in reverse order.

- A. Apply V_{CC} (2.4 V).
- B. Apply V_M (0 or 2.5 V).
- C. Apply P_{IN} (-2 to 2 dBm).
- D. Ramp V_{EN} from 0 to 2.5 V.

• North America Tel: 800.366.2266 / Fax: 978.366.2266


Europe Tel: 44.1908.574.200 / Fax: 44.1908.574.300

Asia/Pacific Tel: 81.44.844.8296 / Fax: 81.44.844.8298 Visit www.macomtech.com for additional data sheets and product information.



Rev. V1

Recommended PCB Configuration

Schematic

Parts List

Part	Value	Case Style	Manufacturer
C1, C2, C6	0.1 μF	0402	Murata
C5	1.0 µF	0402	Murata
C3, C4, C9	47.0 pF	0402	Murata
C7	1000.0 pF	0402	Murata
C8	2.0 pF	0402	Murata
C10	0.022 μF	0402	Murata
R1, R3	249.0 Ω	0402	Panasonic
R2	806.0 Ω	0402	Panasonic
L1	7.5 nH	0402	Coilcraft

Designator	Length (mm) *	Width (mm)
T1	1.09	0.35
T2	2.19	0.35
ТЗ	3.35	0.37
T4	0.41	0.37
* From package edge to center of component		

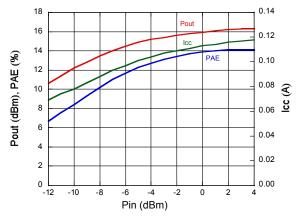
Handling Procedures

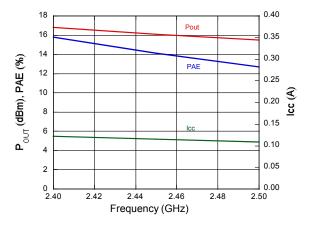
Please observe the following precautions to avoid damage:

Static Sensitivity

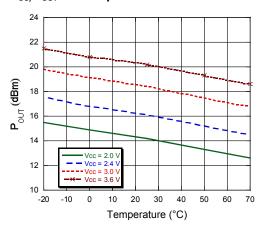
Silicon germanium Integrated Circuits are sensitive to electrostatic discharge (ESD) and can be damaged by static electricity. Proper ESD control techniques should be used when handling these devices.

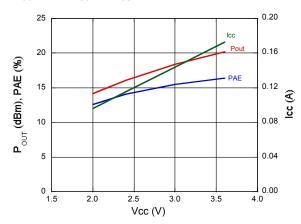
Europe Tel: 44.1908.574.200 / Fax: 44.1908.574.300

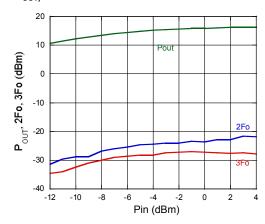

Asia/Pacific Tel: 81.44.844.8296 / Fax: 81.44.844.8298 Visit www.macomtech.com for additional data sheets and product information.

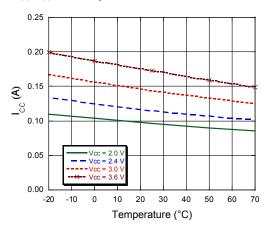

Rev. V1

Typical Characteristics @ 2.45 GHz, V_{CC} = 2.4 V (Low Power Mode)


Pout, PAE, Icc vs. PIN


Pout, PAE, Icc vs. Frequency

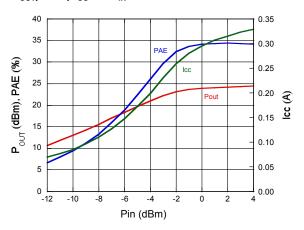

V_{CC.} P_{OUT} vs. Temperature

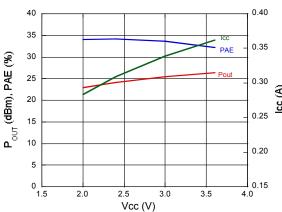

P_{OUT}, PAE, I_{CC} vs. V_{CC}

Pout, Harmonics vs. Pin

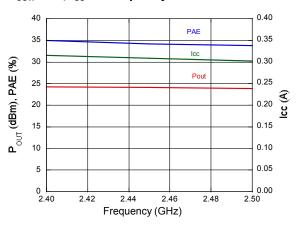
V_{CC}, I_{CC} vs. Temperature

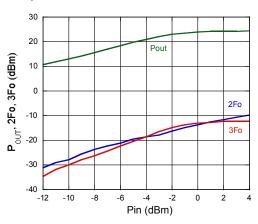
- North America Tel: 800.366.2266 / Fax: 978.366.2266
 - Europe Tel: 44.1908.574.200 / Fax: 44.1908.574.300
 - Asia/Pacific Tel: 81.44.844.8296 / Fax: 81.44.844.8298 Visit www.macomtech.com for additional data sheets and product information.

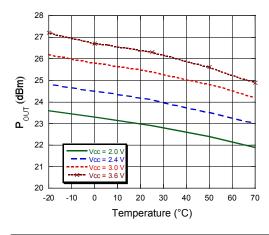

ADVANCED: Data Sheets contain information regarding a product M/A-COM Technology Solutions is considering for development. Performance is based on target specifications, simulated results, and/or prototype measurements. Commitment to develop is not guaranteed. **PRELIMINARY:** Data Sheets contain information regarding a product M/A-COM Technology Solutions has under development. Performance is based on engineering tests. Specifications are typical. Mechanical outline has been fixed. Engineering samples and/or test data may be available. Commitment to produce in volume is not guaranteed.

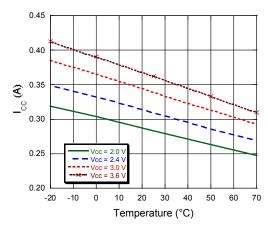

Rev. V1

Typical Characteristics @ 2.45 GHz, V_{CC} = 2.4 V (High Power Mode)


Pout, PAE, Icc vs. Pin


Pout, PAE, Icc vs. Vcc


Pout, PAE, Icc vs. Frequency


P_{OUT}, Harmonics vs. Pin

V_{CC}, P_{OUT} vs. Temperature

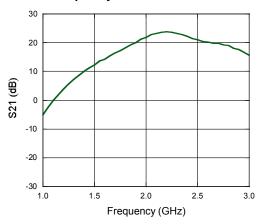
V_{CC}, I_{CC} vs. Temperature

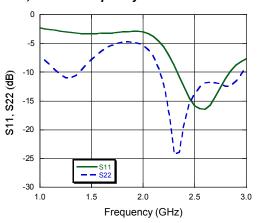
- ADVANCED: Data Sheets contain information regarding a product M/A-COM Technology Solutions is considering for development. Performance is based on target specifications, simulated results, and/or prototype measurements. Commitment to develop is not guaranteed.

 PRELIMINARY: Data Sheets contain information regarding a product M/A-COM Technology
- and/or prototype measurements. Commitment to develop is not guaranteed.

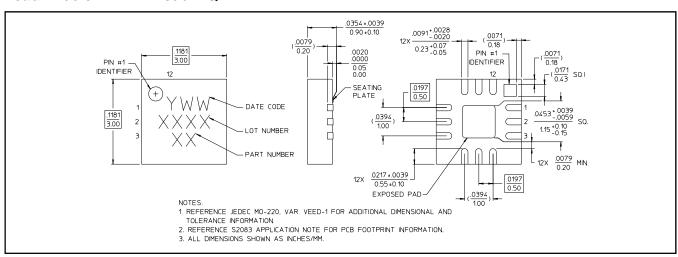
 PRELIMINARY: Data Sheets contain information regarding a product M/A-COM Technology
 Solutions has under development. Performance is based on engineering tests. Specifications are
 typical. Mechanical outline has been fixed. Engineering samples and/or test data may be available.

 Commitment to produce in volume is not guaranteed.
- North America Tel: 800.366.2266 / Fax: 978.366.2266
- Europe Tel: 44.1908.574.200 / Fax: 44.1908.574.300
- Asia/Pacific Tel: 81.44.844.8296 / Fax: 81.44.844.8298
 Visit www.macomtech.com for additional data sheets and product information.


M/A-COM Technology Solutions Inc. and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice.


Rev. V1

Typical Characteristics @ 2.45 GHz, V_{CC} = 2.4 V (High Power Mode)


S21 vs. Frequency

S11, S22 vs. Frequency

Lead-Free 3 mm 12-Lead PQFN[†]

[†] Reference Application Note M538 for lead-free solder reflow recommendations. Meets JEDEC moisture sensitivity level 1 requirements.

is considering for development. Performance is based on target specifications, simulated results, and/or prototype measurements. Commitment to develop is not guaranteed. **PRELIMINARY:** Data Sheets contain information regarding a product M/A-COM Technology Solutions has under development. Performance is based on engineering tests. Specifications are typical. Mechanical outline has been fixed. Engineering samples and/or test data may be available. Commitment to produce in volume is not guaranteed.

- North America Tel: 800.366.2266 / Fax: 978.366.2266
- Europe Tel: 44.1908.574.200 / Fax: 44.1908.574.300
- Asia/Pacific Tel: 81.44.844.8296 / Fax: 81.44.844.8298 Visit www.macomtech.com for additional data sheets and product information.

ADVANCED: Data Sheets contain information regarding a product M/A-COM Technology Solutions